If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-30x+18=0
a = 6; b = -30; c = +18;
Δ = b2-4ac
Δ = -302-4·6·18
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{13}}{2*6}=\frac{30-6\sqrt{13}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{13}}{2*6}=\frac{30+6\sqrt{13}}{12} $
| (X+96)+(x-96)=180 | | 3c+6=9c+4 | | 3c+2=9c+6 | | 4y+40=8(y+8) | | 4b+3=12b+7 | | c^-22=13 | | f^2−24f−41=0 | | 5m+0.18=68 | | 6a+12=18a+9 | | 6a+12=18a+√81 | | 10x-3=83 | | 8a+12=2a+(-5)2 | | 5(2x-3)+6=35-3x | | x^2-6/5=2 | | -7=-3x+2x-8 | | 10x+12=5x+(3)2 | | 9c-5=3c+3 | | 7x+1=4x–1 | | x+0,1x=153000000 | | 3(3y-4)=15 | | 4×24-64=t | | 9c-4=2c+(5)(4)² | | 3.5/12=1/x | | 9c-4=2c+(5)(4)2 | | 3(3y-4)=-5 | | 9c-4=2c+(5)(4) | | p-2=-15 | | 7o+3=2o+1 | | -11n=77 | | 5h+1=10h+2 | | 4a+12=12a+5 | | 1/x=3.5/144 |